## DS3 Auction Design -A New Entrant Perspective

DS3 System Services Auction Design Industry Workshop

#### Dundalk 25/04/2016





#### Project CAES, Larne- NI Project Info

- Siemens Dresser-Rand;
  - 330MW Generation, 250MW Demand
  - both sources of inertia.
- Grid Secured, Planning submitted Dec 2015.
  - Project designated strategic infrastructure in N.I.
- Designated as a Project of Common Interest (PCI) by the European Commission
  - Awarded grant funding of €6.5mln from Connecting Europe Facility
- Currently progressing Front End Engineering Design (FEED)
- Shovel Ready: Dec 2016

-O- SOLAR ENERGY



### Project CAES, Larne- NI







ENERGY STORAGE



#### Project CAES, Larne- NI DS3 Performance

- Generator & Compressor provides full range of DS3 services.
- Independent DS3 performance assessment complete
- CBA indicates significant consumer saving
- Strategic Partnership with Siemens Dresser-Rand
- Power Generation Mode
  - 10% 100% rated power output in 5 minutes
  - 0% to 100% rated output; 10 minutes
  - Flat heat rate
  - Exceptional Load following capability
- Compression Mode
  - 65% to 110 % of rated output
  - High system efficiency over the operating range





ENERGY STORAGE





### **Project CAES, Larne- NI** Innovative use of Existing Technology

- 2 CAES plants in operation worldwide;
  - Huntorf, Germany: 1978
  - McIntosh, Alabama: 1991
    - >97% Generation Running Reliability since COD
    - >99.5% Compression Running Reliability since COD
- Over 1,200 compressors supplied
- Over 300 LP Expanders installed
- Salt Caverns used for storage over 50 years. >500 storage caverns throughout the world, primarily for gas storage









#### Auction Design A New Entrant Perspective

- New Entrants require the following to secure finance;
  - Stable Revenues
  - Long Term Contracts
  - Clear auction design and unambiguous contract allocation
  - Appropriate allocation of risk







### Auction Design A New Entrant Perspective

- Challenges to date with the current structure;
  - Extensive work leading to impasse
  - Confusing Auction Design
  - Inappropriate allocation of risk
  - Risk of resorting to regulated tariff seems high
    - Tariffs as designed are not investable
  - TSO discretion for new entrants
  - Revenue clawback









## How to Move Forward?

- Separate existing participants and new entrants
  - Existing participants: 1 year tariff
  - New Entrants: 15 year contracts
- New entrant procurement
  - (a) Simpler Auction format -clear winners and losers
  - (b) tendered value based tariffs
  - (c) Separate Pots as per GB CfD

What is the selection criteria??







## How to Move Forward?

- Selection criteria for new entrants in non-auction format;
  - Prioritise providers who provide the highest volume of service, at lowest relative cost and weighted by the value of the service.

| • | Example: | Unit |                           | Service A | Service B | Service C | Service D |
|---|----------|------|---------------------------|-----------|-----------|-----------|-----------|
|   |          |      | System Tariff<br>(€/Unit) | 80        | 50        | 60        | 40        |
|   |          |      | Required Qty              | 200       | 80        | 90        | 110       |
|   |          | А    | Offered P/Q               | 50 / 100  | 35 / 50   | 30 / 60   | 40 / 80   |
|   |          | В    | Offered P/Q               | 35 / 110  | 35 / 55   | NA        | NA        |

$$\begin{aligned} Priority &= \sum_{services} \left( \frac{System \, Tariff}{Offer \, Price} \times \frac{Offer \, Quantity}{Required \, Quantity} \right) \\ Unit \, A &= \left( \frac{80}{50} \times \frac{100}{200} \right) + \left( \frac{50}{35} \times \frac{50}{80} \right) + \left( \frac{60}{30} \times \frac{60}{90} \right) + \left( \frac{40}{40} \times \frac{80}{110} \right) = \mathbf{3.75} \\ Unit \, B &= \left( \frac{80}{35} \times \frac{110}{200} \right) + \left( \frac{50}{35} \times \frac{55}{80} \right) = \mathbf{1.7} \end{aligned}$$



# How to Move Forward?

- Minimum Annual Revenue Requirement (MARR) only for DS3 revenue
  - Must be re-established
  - Where contractual availability decreases below an agreed threshold, MARR pro-rata reduces to protect consumer
- Profit Capping
  - Profits should be capped for new entrants
  - Non-Profit Distributing Model is a commonly utilised structure









# Conclusion

- Gaelectric proposal ensures;
  - Consumer is protected
  - New entrants remain incentivised
  - Renewable targets will be met securely & curtailment reduced
  - Investment opportunity is clear





SY ENERGY

