I-SEM CRM Consultation Paper Workshop

Product Design

Dundalk, 31 July 2015

Overview of Reliability Option

- Reliability Option is a one-way CfD. Capacity providers:
 - Paid an option fee, determined by auction
 - Make difference payments of (Reference price Strike price) when Reference Price > Strike Price

Worked Example

Assumptions

- Capacity auction clearing price of €20/kW per annum, equates to €2.28/MWh
- The Strike Price is €200/MWh; and
- The Market Reference Price is:
 - Scenario A: €100/MWh;
 - Scenario B: €300/MWh.

	Scenario A	Scenario B
Generator energy market income	100.00	300.00
Capacity option fee	2.28	2.28
Generator RO difference payment	0.00	-100.00
Total capacity market income	2.28	-97.72
Total generator revenue / supplier payment	102.28	202.28

Key features to be determined

- Strike price and strike price indexing
- Scarcity pricing
- Market reference price
- Load following or not?
- Performance incentive mechanism

Strike Price and indexing options

Fixed Price

e.g. € 250 / MWh

Variable (indexed) Price Strike Price = the heat rate x fuel cost of the Peak Energy Rents (PER) Proxy Unit.

Use of a spot gas / oil price for fuel cost

Proxy unit is **actual** peak plant on system

Proxy unit is hypothetical peak plant Grandfathered

Periodically reviewed

Reference markets

Three key markets defined by Energy Trading Arrangement (ETA) workstream

Day Ahead Market (DAM):

- Majority of physical energy traded via the DAM
- Primary coupled market (to the wider European Internal Market)
- Liquid market and transparent price for forward contracting

Intra-day Market (IDM):

- Continuously traded
- EU Target Model provides that intra-day regional auctions may also be implemented, but not a given

Balancing Market (BM):

- ETA workstream is still consulting on the details of the BM price formation
- Will be a single marginal imbalance price for energy actions, which can be used as MRP

11 am D-1

11am D-1 to [1] hour before start of settlement period [1] hour before start of settlement period to settlement period end

COER Commission for Energy Regulation An Coimisiún um Rialáil Fuinnimh

Scarcity pricing (1)

• Increased focus on scarcity pricing

EC, "Launching the public consultation process on a new energy market design" (Summer package), published 15 July 2015

In some markets, the large-scale shift towards capital-intensive electricity production from wind and sun with marginal costs close to zero has led to prolonged periods of low spot prices as well as reduced running hours of conventional generation. In such a situation, **an essential condition for electricity markets sending the right price signals for investment in adequate capacity is to allow prices to reflect scarcity during demand peaks**, and for investors to have confidence in this translating into long-term price signals.

- Recent Ofgem reforms introducing scarcity pricing into the GB Balancing Mechanism
- A number of markets in the US have administrative scarcity pricing
- I-SEM scarcity pricing considered in conjunction with Reliability Option Reliability Options provide a hedge to Suppliers under scarcity conditions

Scarcity pricing: Evidence from GB pre cash-out reform?

Argument that SEM BCoP prevents prices reflecting scarcity. However consider GB in 2012-2014:

- Highest GB DAM price was £262.50/MWh;
- Only 37 of 52,000 GB SBPs were in excess of £200/MWh, highest SBP = £430/MWh.
- National Grid issued a Notice of Insufficient Margin in February 2012- highest System Buy Price was only £264/MWh;
- More instances of high prices in the SEM during this period, despite absence of BCoP in GB

£/MWh	GB Day	GB BM System	SEM Ex Ante Day	SEM Actual
	Ahead	Buy Price	Ahead estimate	Ex Post
>£150/MWh	20	196	643	598
>£200/MWh	11	37	259	287
>£300/MWh	0	8	40	74
>£400/MWh	0	2	8	20
>£500/MWh	0	0	0	10

No. Of half hours 2012-2014

Maximum price in any half hour

	GB Day	GB BM System	SEM Ex Ante Day	SEM Actual
	Ahead	Buy Price	Ahead estimate	Ex Post
Max price £/MWh	£262.50	£429.10	£484.63	£878.90

Potential form of scarcity price

Two key options for administered scarcity price:

- **BNE Cost based**: Annualised cost of an additional hypothetical best new entrant divided by average scarcity hours per year
- Value of Lost Load (VOLL) based: The VoLL is an estimate of the maximum value that consumers would have been prepared to pay for continuity of supply and is a measure of the opportunity cost of unserved load
 - Pure VoLL (if load actually lost)
 - VoLL x Loss of Load Probability (if reserve reduced)

Should result in a similar result, if the security standard is set using appropriate cost benefit techniques.

Market reference price options

- Option 1: BM price
 - Option 1a: BM price without scarcity pricing;
 - Option 1b: BM price with scarcity pricing
- Option 2: 100% Intra-day market price;
- Option 3: 100% DAM price;
- Option 4: Multiple reference market option:
 - Option 4a: A blended price option;
 - Option 4b: A split market price option. Any volumes sold in DAM settled at DAM price, remaining unsold RO volume settled against BM price*

*could extend to include IDM price component

Blended vs split market reference price Worked examples

Common assumptions

- Capacity provider sells 90% of 10MW RO volume into DAM, 10% into BM
- DAM Price = €150/MWh, BM Price = €250/MWh
- Strike Price = €200/MWh

Blended price example

- MRP = 90% x 150 + 10% x 250 = €160/MWh
- Reference Price is less than Strike price so, no difference payment

Split price example

- 9MW settled at reference price of €150 /MWh (so no difference payment)
- 1 MW settled at reference payment of €250/MWh
- So total difference payment = 1x
 (250 200) = €50

Key factors driving choice of MRP

- Security of supply: Should incentivise availability at times of system stress
- EU Internal Market: Optimisation of interconnector trading, including at Day Ahead stage
- Efficiency: Accessibility. The MRP should be accessible (i.e. achievable) by capacity providers
- **Competition: Promotion of wider liquidity objectives**, including for DAMbut could this be achieved via mandated DAM bidding for RO holders

MRP Option Evaluation (1)

Option	Pr	OS	Со	ons
Option 1a: BM	•	More likely to reflect system	•	Capacity provider basis risk on DAM
price		stress than DAM or IDM		volume
			•	Reduced net volume in DAM?
			•	Limited incentives on marginal BM
				price setting generator
Option 1b:	•	Strongly incentivises	•	Capacity provider basis risk
BM with		availability at times of system	•	Reduced net volume in DAM?
Scarcity Price		stress	•	High risk for capacity provider if it
				fails to deliver (but capped)
Option 2:	•	Closer to real time than DAM	•	Does not reflect real time events
100% Intra-			•	Uncertainty about liquidity
day price			•	Lack of price accessibility unless
				intra-day auctions implemented

MRP Option Evaluation (2)

Option	Pro	DS	Со	ns
Option 3:	•	Price robust and accessible	•	Weaker at incentivising
100% DAM	•	Promotes efficient day-ahead		availability during real time
price		EUPHEMIA scheduling		system stress
	•	Consistent with existing approach to	•	Would not provide hedge for BM
		CfDs and FTRs		scarcity prices
Option 4a:	•	Mitigates capacity provider basis risk	•	Weak at incentivising availability
Blended	•	Could be implemented with scarcity		at times of system stress
price		pricing in BM.	•	Creates complexity for hedging
				strategies?
Option 4b:	•	Right incentives on non-marginal	•	Creates complexity for hedging
Split market		capacity		strategies?
price	•	Mitigates capacity provider basis risk		
	•	Could be implemented with scarcity		
		pricing in BM.		

Load following

 If scarcity occurs outside a peak demand period (e.g. due to forced outages, wind), then RO payments could exceed Supplier compensation requirements

• Load following adjusts payments appropriately

(Actual demand + Operating Reserve Requirement – Capacity provided by plant without an RO commitment) / Volume of RO sold

Load following Worked example

Peak demand requirement	6,000	MW
Reserve requirement	0	MW
Reliability Option volume	6,000	MW
Demand at system stress incident	5,000	MW
Strike Price	200	€/MWh
Market Reference Price	5,200	€/MWh
RO holder difference payment	5,000	€/MWh

	Scenario A: no-	Scenario B:
	load following	load following
Volume on which RO difference payments made (MW)	6,000	5,000
Supplier volumes (MW)	5,000	5,000
Capacity provider RO difference payment (€)	30,000,000	25,000,000
RO difference payment / MWh of supplier volume (€/MWh)	6,000	5,000
Net supplier payment / MWh (€/MWh)	- 800	200

Performance incentives

- In theory, the basic RO alone provides strong financial incentives to be generating when the options are exercised
- Initial CRMs in the US and in Colombia paid little attention to explicit incentives based on physical performance, but have evolved
- Examples included in the consultation document
- Scarcity pricing in energy market introduces strong incentives to be available at times of system stress- need to consider combined effect
- Caps and floors on incentives to be considered

I-SEM CRM Consultation Paper Workshop

Eligibility

Dundalk, 31 July 2015

Key issues

Focus of today's discussion

- Plant receiving support under other mechanisms
- Treatment of non-firm transmission access generation
- Mandatory vs discretionary bidding for existing plant
- Adjustment for non-CRM bidding generation
- Demand side participation
- De-rating approaches
- Treatment of aggregation

Other issues discussed in consultation document

- Renewables not receiving support- included
- Storage and energy limited plant- RAs will work with the System Operator (SO) to define the minimum requirements and de-rating factors
- Pre-qualification- requirements to be determined

Plant receiving support under other mechanisms

Affected plant:

- Supported renewables
- Peat in Ireland 380 MW
- GUA plant in Northern Ireland 595 MW, expire in Sept 2018
- Longer term ancillary service contracts

Key issues:

- Potential over-compensation (net additionality of capacity revenue varies by scheme)
- Payment from Ireland / NI specific
 PSO or All-Island capacity
 revenue

Supported plant- Options

- Option 1: All supported generators ineligible as in GB;
- Option 2: All existing supported generators who have been eligible for SEM capacity payments are eligible, but future generators will be ineligible.
- Option 3: All supported generators eligible.
- Option 4: Scheme by scheme specific treatment subject to judgment of whether eligibility leads to over compensation

Evaluation of supported generation options (for renewables)

	Pros	Cons
Option 1: All	Lowest cost to consumers (ROC	Suppliers not fully hedged
ineligible	generators)	
	Lowest distortion on cross-border	Change in treatment for existing
	trade and location of generation?	supported generation
	Avoids some performance monitoring*	
Option 2:	Low perceptions of regulatory risk	Suppliers not fully hedged
Existing eligible,	Lower distortion on cross-border trade	Could result in over-compensation,
future ineligible	and location of generation?	depending on support scheme
	Avoids some performance monitoring*	Avoids some performance monitoring*
Option 3: All	Economically efficient provision of	Could result in over-compensation,
eligible	capacity	depending on support scheme
	Consistent with long term vision	
	Existing position capacity payment	Requires performance monitoring of lots
	eligibility	of small generators*
	Suppliers better hedged	
* depending on perfo	rmance monitoring regime	

Treatment of non-firm transmission access generation

- **Option1: Eligible to bid, subject to the same de-rating factors** as firm generators of the same technology
- Option 2: Eligible to bid, subject to additional de-rating (for transmission access, as well as technology specific)

• Option 3: Ineligible to bid

Over 500 MW of affected capacity in 2017, reducing to around 300MW in 2018 to 2021

Mandatory vs voluntary bidding and adjusting capacity requirement

Mandatory vs discretionary

- May choose to make bidding into CRM auction mandatory for eligible generators, to prevent abuse of potential market power
- But could partially address via reducing amount purchased

Adjusting the CRM requirement

- Need to adjust capacity requirement for ineligible or discretionary opted out plant
 - Need to know "opted-out" plant before auction
 - Additional rules to prevent early withdrawal from auction

Demand side participation

- Keen to incentivise wide range of demand side participation:
 - End consumers who have the capability to reduce demand at times of systems stress.
 - Generation capacity which does not have the capability to export to the grid, but has the capability to reduce the end consumers' net demand from the grid
 - Generation capacity to reduce on-site end consumers' net demand, and to export surplus to grid
- Incentives should reflect system benefits delivered....

Demand side participation options (for reduced demand, not grid exports)

	Option 1	Option 2	Option 3
Additional energy			
payment	No	Yes	No
Exempt from RO			
difference payments	No	No	Yes

Demand side participant Worked example- end consumer on tariff

- 1MW of RO
- Option fee = €5/MW/h
- Strike price = €200/MWh
- Reduces consumption from 3MW to 2MW, when called
- Pays a Supplier €80/MWh for metered consumption

DSU does not participate in CRM								
Option	Consump	Capacity	Difference	Energy payment for	Energy payment	Net		
	tion	payment	payment	load reduction	to Supplier	payment		
all	3	0	0	0	-240	-240		
options								
DSU part	icipates in	CRM: Dem	and reduction	on not called				
Option	Consump	Capacity	Difference	Energy payment for	Energy payment	Net		
	tion	payment	payment	load reduction	to Supplier	payment		
						payment		
all	3	5	0	0	-240	-235		
all options	3	5	0	0	-240	-235		
all options DSU part	3 icipates in	5 CRM : Marl	0 <et price="€</td"><td>0 300/MWh, demand r</td><td>-240 eduction called</td><td>-235</td></et>	0 300/MWh, demand r	-240 eduction called	-235		
all options DSU part Option	icipates in Consump	5 CRM : Marl Capacity	0 <et price="€<br">Difference</et>	0 300/MWh, demand r Energy payment for	-240 eduction called Energy payment	-235 Net		
all options DSU part Option	3 icipates in Consump tion	5 CRM : Marl Capacity payment	0 <et price="€<br">Difference payment</et>	0 300/MWh, demand r Energy payment for load reduction	-240 eduction called Energy payment to Supplier	-235 Net payment		
all options DSU part Option 1	icipates in Consump tion 2	5 CRM : Mark Capacity payment 5	0 <et price="€<br">Difference payment -100</et>	0 300/MWh, demand r Energy payment for load reduction 0	-240 eduction called Energy payment to Supplier -160	-235 Net payment -255		
all options DSU part Option 1 2	3 icipates in Consump tion 2 2	5 CRM : Mark Capacity payment 5 5	0 <et price="€<br">Difference payment -100 -100</et>	0 300/MWh, demand r Energy payment for load reduction 0 300	-240 eduction called Energy payment to Supplier -160 -160	-235 Net payment -255 45		

Demand side participant Worked example- end consumer on "Pool price contract"

• DSU X has a "Pool price contract" with a Supplier based on metered demand

DSU does not participate in CRM- Pool price = €300/MWh							
Option	Consumption	Capacity	Difference	Energy payment	Energy payment	Net	
		payment	payment	for load reduction	to Supplier	payment	
all	3	0	0	0	-900	-900	
options							
DSU par	ticipates in CRI	M: Market p	orice = €300/N	/Wh, demand redu	ction called	-	
Option	Consumption	Capacity	Difference	Energy payment	Energy payment	Net	
		payment	payment	for load reduction	to Supplier	payment	
1	2	5	-100	0	-600	-695	
2	2	5	-100	300	-600	-395	D
3	2	5	0	0	-600	-595	

Potential double reward for reducing consumption, under Option 2?

De-rating: Key issues

- Generic de-rating factor by technology or plant specific;
- Historic vs. projection approach;
- Marginal vs. Average contribution; and
- Grandfathering.

